
What’s Necessary to Establish Malware Freedom
Unconditionally?

Virgil D. Gligor

ECE and CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

FCS Workshop
Boston

June 22, 2020

06/22/2020 1

Outline

06/22/2020 2

I. Background

- adversary: persistent malware & its remote controller
- malware-free state? unconditionally ?
- a sufficient solution for the cWRAM model

II. What’s necessary on real systems?

- external verifiers and challenge functions
challenge functions:
- optimal space-time bounds (m. t)
- unique (m, t) bounds for code
- target claw free within (m, t) bounds

III. Q & A

06/22/2020 3

I. Background

V. Gligor and M. Woo, “Establishing Software Root of Trust Unconditionally,”
in Proc. of NDSS, San Diego, CA. 2019.

(full length paper - CyLab TR 2018 -003, Nov. 2018)

V. Gligor, “A Rest Stop on the Unending Road to Provable Security”
in Proc. of SPW, Cambridge University, UK, 2019 (article and transcript of discussion)

06/22/2020 4

Memory2

NIC

Memory4

Disk controller

CPU4

CPU3

CPU2

Memory3

Memory0

CPU1

Memory1

CPU0Baseboard
controller

USB controller

GPU

RAM

CPU R
M

Bus
System

persistent malware
- survives power cycles, trusted boots, and re-flashing
- under security	monitors	&	anti-malware	tools
- no observable (hyper)properties Don’t

Care

remote controller

Adversary:
persistent malware & its remote controller

06/22/2020 5

06/22/2020 6

persistent malware can
- extract all software secrets stored on its computer
- modify all SW/FW; e.g., at system initialization
- read/write all I/O channels & communicate with remote controller
- adaptively modify programs and data & execute any function on chosen input

but
- cannot access the processors & storage (e.g., random bits) of a connected system

remote controller can
- exercise all attacks that implant persistent malware on remote system
- communicate with & control persistent malware
- use unbounded computation power: e.g., break all complexity-based crypto

but
- cannot predict Nature’s throw of fair dice . . . or random bits of an QRNG
- cannot modify a system’s HW

06/22/2020 7

Malware-free states? Unconditionally?

06/22/2020 8

Unconditional Establishment of RoT State

- no secrets, no trusted HW modules, no bounds on remote adversary’s power

- need only truly random bits & HW specifications

Persistent malware has no externally observable (hyper)properties

Q: How can malware-free states be established (w/o taking the system apart)?

A: RoT state (“all and only chosen content”) => malware-free state
RoT failure => detect malware execution or unaccounted content

` (e.g., malware caused), or both

06/22/2020 9

v

CPU

M

Device

Initialize

External
Verifier

m-t optimal code

Cm,t

unique & target claw free

nonce

random
bits

Cnonceß

t?

Cnonce(v)?

OK => RoT on malware-free

Device
Specs

General Purpose Regs

processor state R

A Sufficient Solution on the cWRAM

06/22/2020 10

- Constants: w-bit word, up to 2 operands/instruction
instructions execute in unit time; no cycles, frequency, voltage, current, …

MM

Overview: cWRAM ISA++

- Memory: M words
- Processor registers: GPRs, PC, PSW, Special Processor Registers R
- Addressing: immediate, relative, direct, indirect
- Architecture features: caches, virtual memory, TLBs, pipelining, multi-core processors

- Constants: w-bit word, up to 2 operands/instruction
instructions execute in unit time; no cycles, frequency, voltage, current, …

- variable shiftr/l(Ri, Rj),	variable rotater/l(Ri, Rj),	.	.	.
- multiplication	(1	register	output).	.	.	
-mod (aka., division-with-remainder) . . .

- ISA: all (un)signed integer instructions
- All Loads, Stores, Register transfers
- All Unconditional & Conditional Branches, all branch types

- all predicates with 1 or 2 operands
- Halt
- All Computation Instructions:

- addition, subtraction, logic, shiftr/l(Ri, α), rotater/l(Ri, α), . . .

- Memory: M words
- Processor registers: GPRs, PC, PSW, Special Processor Registers R
- Addressing: immediate, relative, direct, indirect
- Architecture features: caches, virtual memory, TLBs, pipelining, multi-core processors

06/22/2020 11

si = Σ rj(i+1)j (mod p)
j = 0

k-1 0

i = d
Σ + (si vi)�xi (mod p),

{ r0…rk-1,x } Zp

random
bits

$

nonce

d = |v|-1
Hr0…rk-1,x(v) =	

randomized polynomial family

unique m-t optimal bounds on cWRAM code: m = k + 22, t = (6k - 4)6d

Hr0…rk-1,x(v) = Hd,k,x(v)

k-independent (almost) universal hash functions

(m’,t’) “<“ (m, t) => Pr [nonce, f,y : f(y) = Hd,k,x(v) | (m’,t’)] ≤ 3
p

ΕΕ

target claw free within the m-t bounds

What is a nonce?
Cm,t on cWRAM?

06/22/2020 12

II. What’s necessary on real systems?

External
Verifier

executes CnonceÎ {Cm,t}
on input v

challenge function
selection:

nonce

untrusted

measurement:
system response

CPU-Memory Systemtrustworthy

N1

N1:	existence	of	external	verifier	&	challenge	function
N2:	find	a	concrete	space-time	optimal	bound:	(m,t)
N3:	(m,t)	is	unique	for	program	code
N4:	target	claw	free	within	(m,t)

N2 N3 N4

{Cm,t} satisfies:

06/22/2020
13

External
Observer

proof of
malware
freedom ?

(un)trusted?
system

no
challenge
function

Protocols for n Detectable Properties

establish => all n systems are trusted

abort => ≤ n -1 systems are untrusted

1.	external	verifiers	
&	challenge	functions

untrusted
system 2

malware
free?

untrusted
system 1

system 3
untrusted

Detectable
Property

External
Verifier

trustworthy

malware
free?

challenge
function

system
response

trustworthy?
system 1

06/22/2020
14

malware-free
probability ≥ 1 - ε

Unconditionally Detectable
Byzantine	Agreement

for	Broadcast
with	probability 1	- ε

untrusted
system 2

system 3
untrustedLegend:																									synchronous private channel

proof of
malware
freedom ?

no
challenge
function

Necessity

1.	external	verifiers	
&	challenge	functions External

Observer

(un)trusted?
system

Unconditionally Detectable
Byzantine	Agreement	for	
Rational	Consensus
with	probability 1	- ε

External
Verifier

trustworthy

malware
free?

challenge
function

system
response

06/22/2020
15

malware-free
probability ≥ 1 - ε

untrusted
system 2

system 3
untrustedLegend:																									synchronous private channel

proof of
malware
freedom ?

no
challenge
function

Necessity

1.	external	verifiers	
&	challenge	functions

(un)trusted?
system

External
Observer

trustworthy?
system 1

External
Verifier

trustworthy

malware
free?

challenge
function

system
response

06/22/2020
16

untrusted
system 2

system 3
untrustedLegend:																									synchronous private channel

proof of
malware
freedom ?

no
challenge
function

Necessity

1.	external	verifiers	
&	challenge	functions

Traditional
Consensus
with crashes

(un)trusted?
system

trustworthy?
system 1

External
Observer

06/22/2020 17

2.	find space-time	bounds	

External
Verifier

trustworthy

malware
free

challenge
function

baseline
Cnonce(v)

trusted
system/simulator

External
Verifier

trustworthy

malware
free?

challenge
function

actual
result

untrusted
system

Cnonce(v) = result &
baseline = actual?

baseline measurement
= minimum amount of resources used by Cnonce

to prevent malware running or hiding
constconst

power time

Esys(Cnonce) measurement accuracy => a specific system initialization & choice of Cnonce

min Esys(Cnonce) => min. space-time bounds => lower (m,t) bounds = optimal (m,t) bounds

current, voltage, frequency, cc, temperature

min Esys(Cnonce) <≠ optimal (m,t) bounds

Esys(Cnonce)

37°C

06/22/2020 18

2.	find space-time	bounds	

baseline measurement
min Esys for single core CPUs [DeVogeleer, et al. 2017]

Esys,i = (Pcpu,i + Pdrop,i + Pback) · cci · (1/(f – fk) + β).

Esys(Cnonce) = Σi Esys,i = (Pcpu,i + Pback) · cci · (1/f + ε)

const

min Esys(Cnonce) => min cci & min mem size => lower (m,t) bounds = optimal (m,t) bounds

min Esys(Cnonce) <≠ optimal (m,t) bounds of Cnonce

External
Verifier

trustworthy

malware
free

challenge
function

baseline
Cnonce(v)

trusted
system/simulator

for specific system initialization & choice of Cnonce

0 0 const ε~mem size const

06/22/2020 19

3.	unique	m-t	bounds	for	Cm,t program	code

memory	
space

execution	
time

Mmemm

T

time

t CM,t
code

Cmem,time
code

Cm,T
code

memory	
space

execution	
time

T
Cm,T
code

input u

m +|u|

verifier requests
initialization

c) Cm,t code identity in (m,t): Cnonce code in v => Cnonce(v) is unique in (m,t), whp.

3 space-time optimal program families CM,t

b) Cm,t = second pre-image free: u’ ≠ u => Cnonce(u’) ≠	Cnonce(u), whp.

input u’

cWRAM

M +|u|

t+δt
CM,t
code

δt = time to transfer M – m to/from disk

T/t > 1 + δ, 0 < δ <	1;	 T/t >	3	in practice

malware performs
its initialization

a) single choice: Cm,t; e.g., (M,t)

M – m
on disk

06/22/2020
20

4.	target	claw-free	in	(m,t)

Cnonce Î {Cm,t}									

nonce

untrusted system

response
r, (m,t)

persistent malware

v	r

v	f
y	

Cnonce

remote
adversaryround-trip	

time	T

nonce

Cnonce(v) =	rExternal
Verifier

trustworthy Cnonce Î {Cm,t}	
input	v

fi,fj Î {F}, not arbitrary

on any system

xir

fj

xj

fi

poly time

=> hardness conjectures
and/or secrets

06/22/2020 21

III. Q & A

1. How can we tell that the untrusted system is initialized correctly?
e.g., how are asynchronous events verifiably disabled?

3. Is the energy model used realistic? Is there any advantage in using energy
measurements? If so, how are the sensors protected from manipulation?

2. OK, zero false negatives cannot exist in RoT… But why are they negligible?
Sure, the cWRAM model has zero false positives for RoT…
How about in real systems?

4. Is this paper formal enough for a productive discussion at FCS?
(Are there any formal models of security that do not require
secure initial state and implicitly persistent-malware freedom?)

